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Alguns problemas resolvidos

(a) Determine the magnetic flux through the rectangular loop due to the current I. 

(b) Suppose that the current is a function of time with I ( )t = +a  bt  , where a and b are 
positive constants. What is the induced emf in the loop and the direction of the induced 
current? 

Solutions: 

(a) Using Ampere’s law:  

B 
r 

⋅d s =  
r µ I (0.9.1)Ñ∫ 0 enc  

the magnetic field due to a current-carrying wire at a distance r away is 

B = µ0 I (0.9.2)
2π r 

The total magnetic flux ΦB through the loop can be obtained by summing over 
contributions from all differential area elements dA =l dr: 

+ 

B ∫ d B ∫ 
&

⋅d 
& 

= µ0 Il ∫
s w dr = µ0 Il ln ⎜

⎛ s + w 
⎟
⎞ (0.9.3)Φ =  Φ =  B A  

2π s r 2π ⎝ s ⎠ 

Note that we have chosen the area vector to point into the page, so that Φ > 0 .B

(b) According to Faraday’s law, the induced emf is  

ε = − dΦB = − d ⎡ µ0 Il ln ⎛ s + w ⎞⎤ = − µ0l ln ⎛ s + w ⎞ ⋅ dI  = − µ0bl 
ln ⎛ s + w ⎞ (0.9.4)

dt dt ⎢⎣ 2π ⎜⎝ s ⎟⎠⎥⎦ 2π ⎜⎝ s ⎟⎠ dt 2π ⎜⎝ s ⎟⎠ 

where we have used dI / dt = b . 

The straight wire carrying a current I produces a magnetic flux into the page through the 
rectangular loop. By Lenz’s law, the induced current in the loop must be flowing 
counterclockwise in order to produce a magnetic field out of the page to counteract the 
increase in inward flux. 

10.9.2 Loop Changing Area 

A square loop with length l on each side is placed in a uniform magnetic field pointing 
into the page. During a time interval ∆t , the loop is pulled from its two edges and turned 
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according to Faraday’s law of induction. For a conductor which forms a closed loop, the 
emf sets up an induced current = | | /  R , where R is the resistance of the loop. ToI ε 
compute the induced current and its direction, we follow the procedure below: 

r 
1. For the closed loop of area A on a plane, define an area vector A and let it point in 
the direction of your thumb, for the convenience of applying the right-hand rule later. 
Compute the magnetic flux through the loop using 

r r r 
⎪ ⋅ (B  is uniform)⎧B A  

Φ = ⎨ r r rB 
⎪ B A⋅ d (B  is non-uniform) ⎩∫∫ 

Determine the sign of ΦB . 

2. Evaluate the rate of change of magnetic flux dΦB / dt  . Keep in mind that the change 
could be caused by 

(i) changing the magnetic field dB dt / ≠ 0 , 
(ii) changing the loop area if the conductor is moving ( dA dt / ≠ 0 ), or 
(iii) changing the orientation of the loop with respect to the magnetic field ( dθ / dt  ≠ 0 ). 

Determine the sign of dΦB / dt  . 

3. The sign of the induced emf is the opposite of that of dΦB / dt  . The direction of the 
induced current can be found by using Lenz’s law discussed in Section 10.1.2.  

10.9 Solved Problems 

10.9.1 Rectangular Loop Near a Wire 

An infinite straight wire carries a current I is placed to the left of a rectangular loop of 
wire with width w  and length l, as shown in the Figure 10.9.1. 

Figure 10.9.1 Rectangular loop near a wire 
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⌦

Iind  Corrente induzida na espira 

Fio infinito percorrido por uma corrente elétrica dependente do tempo I(t)= a+ bt. Cálculo da corrente 
elétrica induzida na espira adjacente.



Problemas resolvidos
Uma barra condutora de comprimento l pode deslizar livremente sobre dois trilhos paralelos, também 
condutores, sobre uma mesa horizontal. As extremidades da direita dos trilhos estão conectadas por 
um resistor de resistência R, como ilustra a figura. Um agente externo desloca a barra condutora 
para a esquerda com velocidade constante v. Calcule a potência elétrica dissipada no resistor e a 
força necessária para manter a barra com velocidade constante.  

Figure 10.9.3 Sliding rod 

In addition, two resistors R1  and R2 are connected across the ends of the bars. There is a 
uniform magnetic field pointing into the page. Suppose an external agent pulls the bar to 
the left at a constant speed v . Evaluate the following quantities: 

(a) The currents through both resistors; 

(b) The total power delivered to the resistors; 

(c) The applied force needed for the rod to maintain a constant velocity. 

Solutions: 

(a) The emf induced between the ends of the moving rod is 

ε = − dΦB = −Blv (0.9.9)
dt 

The currents through the resistors are 

εI1 =
| |ε , I2 =

| |  (0.9.10)
R1 R2 

Since the flux into the page for the left loop is decreasing, I1 flows clockwise to produce a 
magnetic field pointing into the page. On the other hand, the flux into the page for the 
right loop is increasing. To compensate the change, according to Lenz’s law, I2 must flow 
counterclockwise to produce a magnetic field pointing out of the page. 

(b) The total power dissipated in the two resistors is 

PR = I ε +I | |  (I + I ) | |= ε ⎛

⎝ R 
1

1 

+
R 
1

2 

⎞

⎠ 
= B l v  

⎛

⎝ R 
1

1 

+
R 
1

2 

⎞

⎠
 (0.9.11)1 | |  2 ε = 1 2 ε 2 ⎜ ⎟ 2 2 2 ⎜ ⎟ 

(c) The total current flowing through the rod is I = + II1 2 . Thus, the magnetic force 
acting on the rod is 

= ε ⎛ 1 1 ⎞ 2 2  ⎜
⎛ 1 1 ⎞

FB = IlB | |  lB ⎜ + ⎟ = B l v + ⎟ (0.9.12)
⎝ R1 R2 ⎠ ⎝ R1 R2 ⎠
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Iind  
⌦ d~S

� = B`x ) ✏ = �d�

dt

= �B`v

✏ = Ri = B`v ) i =
B`v

R
P = ✏i =

(B`v)2

R

F = i`B =

✓
B`v

R

◆
`B =

(B`)2 v

R
Força que o campo faz sobre o fio 

Força que o agente externo !
deve fazer 



Problemas resolvidos

R2 dBEnc =  (0.3.8)
2r dt  

A plot of Enc as a function of r is shown in Figure 10.3.2. 

Figure 10.3.2 Induced electric field as a function of r 

10.4 Generators 

One of the most important applications of Faraday’s law of induction is to generators and 
motors. A generator converts mechanical energy into electric energy, while a motor 
converts electrical energy into mechanical energy.  

Figure 10.4.1 (a) A simple generator. (b) The rotating loop as seen from above. 

Figure 10.4.1(a) is a simple illustration of a generator. It consists of an N-turn loop 
rotating in a magnetic field which is assumed to be uniform. The magnetic flux varies 
with time, thereby inducing an emf. From Figure 10.4.1(b), we see that the magnetic flux 
through the loop may be written as 

r r 
Φ = ⋅  = BA cos θ = BA  cos ωt (0.4.1)B AB 

The rate of change of magnetic flux is 

dΦB = −BAω sinωt (0.4.2)
dt 
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Gerador de corrente alternada: 
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Since there are N turns in the loop, the total induced emf across the two ends of the loop 
is 

ε = −N dΦB = NBA  ω sinωt (0.4.3)
dt 

If we connect the generator to a circuit which has a resistance R, then the current 
generated in the circuit is given by 

I = | |ε = NBAω sinωt (0.4.4)
R R 

The current is an alternating current which oscillates in sign and has an amplitude 
I0 = NBAω / R . The power delivered to this circuit is 

| |= (NBA ω)2 

sin  2 ωt (0.4.5)P I= ε 
R 

On the other hand, the torque exerted on the loop is  

τ µB sinθ = µB sin ωt (0.4.6)= 

Thus, the mechanical power supplied to rotate the loop is  

P =τω = B sinµ ω ωt (0.4.7)m

Since the dipole moment for the N-turn current loop is 

2 2N A B  ωµ = NIA = sinωt (0.4.8)
R 

the above expression becomes 

2 2 2 

Pm = ⎜
⎛ N A B  ω sinωt ⎟

⎞
Bω sin ωt = (NAB  ω) sin2 ωt (0.4.9)

⎝ R ⎠ R 

As expected, the mechanical power put in is equal to the electrical power output. 

10.5 Eddy Currents 

We have seen that when a conducting loop moves through a magnetic field, current is 
induced as the result of changing magnetic flux. If a solid conductor were used instead of 
a loop, as shown in Figure 10.5.1, current can also be induced. The induced current 
appears to be circulating and is called an eddy current. 
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; com N espiras 
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I = I0sin!t I0 =
NBA!

R
✏ = ✏0sin!t ✏0 = NBA!

268 CHAPTER SEVEN

FIGURE 7.13
The two coils produce a magnetic field B which is
approximately uniform in the vicinity of the loop. In the
loop, rotating with angular velocity «, a sinusoidally
varying electromotive force is induced.

Suppose the loop rotates with angular velocity co. in radians/sec. If its
position at any instant is specified by the angle 6, then 6 = co/ + a,
where the constant a is simply the position of the loop at t - 0. The
component of B perpendicular to the plane of the loop is B sin 6.
Therefore the flux through the loop at time t is

#(*) = SB sin (co* + a) (19)

where S is the area of the loop. For the induced electromotive force
we then have

SBu
c dt

cos (cor + a) (20)

If the loop instead of being closed is connected through slip rings to
external wires, as shown in Fig. 7.13, we can detect at these terminals
a sinusoidally alternating potential difference.

A numerical example will show how the units work out. Suppose
the area of the loop in Fig. 7.13 is 80 cm2, the field strength B is 50
gauss, and the loop is rotating at 30 revolutions per sec. Then co = 2TT

~A ✓
x

Vista de cima 
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Barra condutora de comprimento l movendo-se com velocidade constante v na presença de um 
campo magnético uniforme B, perpendicular ao plano da barra. Cálculo da f.em. induzida na barra.

v

qE = qvB ) E = vB

 - - - 

 +++

✏ =

Z
~E · d~̀ ) ✏ = E` ) ✏ = v`B
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(c) The induced current is 
ε

I = | |  = πba2 

(0.9.20)
R R 

and its direction is counterclockwise by Lenz’s law. 

(d) The power dissipated due to the resistance R is 

P I R  = 2 = ⎛⎜
πba2 ⎞

⎟ 
2 

R = (πba2 )2 

(0.9.21)
⎝ R ⎠ R 

10.9.6 Moving Loop 

A rectangular loop of dimensions l and w moves with a constant velocity v 
r 

away from an 
infinitely long straight wire carrying a current I in the plane of the loop, as shown in 
Figure 10.9.6. Let the total resistance of the loop be R. What is the current in the loop at 
the instant the near side is a distance r from the wire? 

Figure 10.9.6 A rectangular loop moving away from a current-carrying wire 

Solution: 

The magnetic field at a distance s from the straight wire is, using Ampere’s law:  

µ I
B = 0 (0.9.22)

2π s 

The magnetic flux through a differential area element dA = lds of the loop is 

& & µ I
dΦ =  ⋅d 0 (0.9.23)B A  = l  ds  B 2π s 

where we have chosen the area vector to point into the page, so that Φ > 0 . Integrating B

over the entire area of the loop, the total flux is 

10-23 

(c) The induced current is 
ε

I = | |  = πba2 

(0.9.20)
R R 

and its direction is counterclockwise by Lenz’s law. 

(d) The power dissipated due to the resistance R is 

P I R  = 2 = ⎛⎜
πba2 ⎞

⎟ 
2 

R = (πba2 )2 

(0.9.21)
⎝ R ⎠ R 

10.9.6 Moving Loop 

A rectangular loop of dimensions l and w moves with a constant velocity v 
r 

away from an 
infinitely long straight wire carrying a current I in the plane of the loop, as shown in 
Figure 10.9.6. Let the total resistance of the loop be R. What is the current in the loop at 
the instant the near side is a distance r from the wire? 

Figure 10.9.6 A rectangular loop moving away from a current-carrying wire 

Solution: 

The magnetic field at a distance s from the straight wire is, using Ampere’s law:  

µ I
B = 0 (0.9.22)

2π s 

The magnetic flux through a differential area element dA = lds of the loop is 

& & µ I
dΦ =  ⋅d 0 (0.9.23)B A  = l  ds  B 2π s 

where we have chosen the area vector to point into the page, so that Φ > 0 . Integrating B

over the entire area of the loop, the total flux is 

10-23 

s

⌦

(c) The induced current is 
ε

I = | |  = πba2 

(0.9.20)
R R 

and its direction is counterclockwise by Lenz’s law. 

(d) The power dissipated due to the resistance R is 

P I R  = 2 = ⎛⎜
πba2 ⎞

⎟ 
2 

R = (πba2 )2 

(0.9.21)
⎝ R ⎠ R 

10.9.6 Moving Loop 

A rectangular loop of dimensions l and w moves with a constant velocity v 
r 

away from an 
infinitely long straight wire carrying a current I in the plane of the loop, as shown in 
Figure 10.9.6. Let the total resistance of the loop be R. What is the current in the loop at 
the instant the near side is a distance r from the wire? 

Figure 10.9.6 A rectangular loop moving away from a current-carrying wire 

Solution: 

The magnetic field at a distance s from the straight wire is, using Ampere’s law:  

µ I
B = 0 (0.9.22)

2π s 

The magnetic flux through a differential area element dA = lds of the loop is 

& & µ I
dΦ =  ⋅d 0 (0.9.23)B A  = l  ds  B 2π s 

where we have chosen the area vector to point into the page, so that Φ > 0 . Integrating B

over the entire area of the loop, the total flux is 

10-23 

Uma espira de comprimento l e largura w afasta-se com uma 
velocidade constante v de um fio infinito percorrido por uma 
corrente elétrica I. Calcular a corrente elétrica induzida na 
espira quando sua parte inferior estiver a uma distância r do 
fio.

Φ = µ 
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π 
Il r w+ ds

s 
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2
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π 
Il 

ln ⎛
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r + 
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w ⎞
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(0.9.24)B ∫r ⎜ ⎟ 

Differentiating with respect to t, we obtain the induced emf as 

ε = − dΦB = − µ0 Il d ⎛
⎜ ln 

r + w ⎞
⎟ = − µ0 Il ⎛⎜ 

1 − 1 ⎞
⎟ 

dr  = µ0 Il wv  
(0.9.25)

dt 2 dt ⎝ r ⎠ 2 ⎝ r + w r ⎠ dt π (π π 2 r r + w) 

where v dr  = / dt  . Notice that the induced emf can also be obtained by using Eq. (10.2.2):  

& 
ε = �(& × ) ⋅d & s = [ ( )  − ( + w ] = vl  ⎡

⎣
⎢ 2 

µ
π 
0 I
r 2π ( 

µ 
r 

0 

+ 
I

w) 
⎤
⎦
⎥∫ v B  vl B r  B r  ) − 

(0.9.26)
µ Il vw = 0 

2π r r( + w) 

The induced current is 

| |  µ Ilε vwI = 
R 

= 
2π 

0 

R r (r + w) (0.9.27) 

10.10 Conceptual Questions 

1. A bar magnet falls through a circular loop, as shown in Figure 10.10.1 

Figure 10.10.1 

(a) Describe qualitatively the change in magnetic flux through the loop when the bar 
magnet is above and below the loop. 

(b) Make a qualitative sketch of the graph of the induced current in the loop as a function 
of time, choosing I to be positive when its direction is counterclockwise as viewed from 
above. 

2. Two circular loops A and B have their planes parallel to each other, as shown in Figure 
10.10.2. 
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Corrente induzida opõe-se à variação do fluxo

Imã caindo
a repulsive force due to the induced emf.  Since like poles repel, the loop must behave as 
if it were a bar magnet with its north pole pointing up. Using the right-hand rule, the 
direction of the induced current is counterclockwise, as view from above. Figure 10.1.8(b) 
illustrates how this alternative approach is used. 

Figure 10.1.8 (a) A bar magnet moving toward a current loop. (b) Determination of the 
direction of induced current by considering the magnetic force between the bar magnet 
and the loop 

10.2 Motional EMF 

Consider a conducting bar of length l moving through a uniform magnetic field which 
points into the page, as shown in Figure 10.2.1. Particles with charge q > 0 inside 

experience a magnetic force F 
& 

B = qv 
& ×B 

& 
which tends to push them upward, leaving 

negative charges on the lower end. 

Figure 10.2.1 A conducting bar moving through a uniform magnetic field 

& 
The separation of charge gives rise to an electric field E inside the bar, which in turn 

& & 
produces a downward electric force Fe = qE . At equilibrium where the two forces cancel, 
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Corrente induzida na espira condutora retarda a queda do imã 
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Parte da energia cinética do imã é dissipada, na forma de calor, por efeito Joule na espira 



Correntes de Foucault dissipam calor por efeito Joule

Figure 10.5.1 Appearance of an eddy current when a solid conductor moves through a 
magnetic field. 

The induced eddy currents also generate a magnetic force that opposes the motion, 
making it more difficult to move the conductor across the magnetic field (Figure 10.5.2).  

Figure 10.5.2 Magnetic force arising from the eddy current that opposes the motion of 
the conducting slab. 

Since the conductor has non-vanishing resistance R , Joule heating causes a loss of power 
by an amount P = ε 2 / R . Therefore, by increasing the value of R , power loss can be 
reduced. One way to increase R is to laminate the conducting slab, or construct the slab 
by using gluing together thin strips that are insulated from one another (see Figure 
10.5.3a). Another way is to make cuts in the slab, thereby disrupting the conducting path 
(Figure 10.5.3b). 

Figure 10.5.3 Eddy currents can be reduced by (a) laminating the slab, or (b) making cuts 
on the slab. 

There are important applications of eddy currents. For example, the currents can be used 
to suppress unwanted mechanical oscillations. Another application is the magnetic 
braking systems in high-speed transit cars.  
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Correntes de Foucault dissipam calor por efeito Joule



Indutância mútua e auto indutância



Indutância mútua e auto indutância

Solenóide 1 de raio de interno R1, comprimento l e com N1 espiras!
Solenóide 2 de raio de interno R2, comprimento l e com N2 espiras

Solenóide 1 

Solenóide 2 

Passando uma corrente I1 no solenóide 1, é gerado um campo magnético 

B1 = µ0

✓
N1

`

◆
I1 (r < R1); B1 = 0 (r > R1)

O fluxo de campo magnético produzido pelo solenóide 1 sobre as N2 espiras do solenóide 2  

L21 é chamada de indutância mútua entre os indutores 1 e 2!
!
Unidades: 

�2(1) = N2

Z
~B1 · d~S1 = N1B1 ⇡R

2
1 =

µ0N2N1I1⇡R2
1

`

�2(1) = L21I1 L21 =
µ0N2N1⇡R2

1

`

�

I
=

Wb

A
; 1

Wb

A
= 1H



Indutância mútua e auto indutância

Solenóide 1 de raio de interno R1, comprimento l e com N1 espiras!
Solenóide 2 de raio de interno R2, comprimento l e com N2 espiras

Solenóide 1 

Solenóide 2 

Passando uma corrente I2 no solenóide 2, é gerado um campo magnético 

O fluxo de campo magnético produzido pelo solenóide 2 sobre as N1 espiras do solenóide 1  

Note que L12 = L21

B2 = µ0

✓
N2

`

◆
I2 (r < R2); B2 = 0 (r > R2)

�1(2) = N1

Z
~B2 · d~S2 = N1B2 ⇡R

2
1 =

µ0N2N1I2⇡R2
1

`

�1(2) = L12I2 L12 =
µ0N2N1⇡R2

1

`
= L21



Indutância mútua e auto indutância

Solenóide 1 de raio de interno R1, comprimento l e com N1 espiras!
Solenóide 2 de raio de interno R2, comprimento l e com N2 espiras

Solenóide 1 

Solenóide 2 

Além de produzirem fluxo de campo magnético sobre o outro, eles também produzem em si próprios 

L11 e L22   são as auto-indutâncias dos solenóide 1 e 2 respectivamente 

�11 = N1

Z
~B1 · d~S1 = N1B1 ⇡R

2
1 =

µ0N2
1 I1⇡R

2
1

`

�22 = N2

Z
~B2 · d~S2 = N2B2 ⇡R

2
2 =

µ0N2
2 I2⇡R

2
2

`

�11 = L11I1 L11 =
µ0N2

1⇡R
2
1

`

�22 = L22I2 L22 =
µ0N2

2⇡R
2
2

`

Note que L11, L22, L12 e L21 só dependem de aspectos geométricos dos indutores  



Indutância mútua e auto indutância

Se pelo solenóide 1 passa uma corrente I1 e pelo solenóide 2 
passa uma corrente I2

Solenóide 1 

Solenóide 2 

�11 = L11I1 + L12I2

�22 = L21I1 + L22I2
)

✓
�11

�22

◆
=

✓
L11 L12

L21 L22

◆✓
I1
I2

◆

d�11
dt = L11

dI1
dt + L12

dI2
dt

d�22
dt = L11

dI1
dt + L12

dI2
dt

)
✏1 = �L11

dI1
dt � L12

dI2
dt

✏2 = �L11
dI1
dt � L12

dI2
dt

Com um indutor apenas: ✏ = �L
dI

dt



Energia magnética armazenada no indutor

f.e.m. induzida: 

Potência dissipada: 

Potência fornecida para ter uma corrente i: P = �✏i = L
di

dt
i

✏ = �d�

dt
= �L

di

dt

P = ✏i

A energia total despendida para estabelecer uma corrente I: 

U =

Z I

0
Pdt =

Z I

0
Li

di

dt
dt = L

Z I

0
idi =

1

2
LI2 ) U =

1

2
LI2

i

Para um solenóide com N espiras e comprimento l: B = µ0
N

`
I

L = µ0
N2

`
S onde S é a área da seção reta do solenóide 

U =
1

2
µ0

N2

`
SI2 ) U =

1

2

✓
µ0

N

`
I

◆2 `S

µ0
=

B2

2µ0
V

volume do 
solenóide 



Energia magnética armazenada no indutor

iu =
U

V
=

B2

2µ0
Densidade volumétrica de energia: 

Este resultado é bastante geral. Onde existe um campo magnético com intensidade B, há 
uma densidade de energia magnética 

um =
B2

2µ0

Semelhante ao caso elétrico  ue =
1

2
✏0E

2

Densidade de energia eletromagnética   uem =
1

2
✏0E

2 +
B2

2µ0


